33 research outputs found

    Robust Indoor Localization in a Reverberant Environment Using Microphone Pairs and Asynchronous Acoustic Beacons

    Get PDF
    In this paper, a robust indoor localization method using microphone pairs and asynchronous acoustic beacons was proposed. The proposed method is applicable even with a two-channel microphone pair, which is the minimal configuration of a microphone array. The proposed method estimates location by using the cross-correlation functions of the measured signals as location likelihoods. Three experiments were conducted to evaluate the proposed method. Four beacons were located at the corners of a localizing area of 4 m by 4 m and emitted signals with a bandwidth of 2 kHz. The localization results were compared to the previous method with deterministic direction-of-arrival estimation. The 90th percentiles of the localization error were 0.23 m for the proposed method with two microphones, 0.19 m for the proposed method with four microphones, and 0.30 m for the previous method under conditions without significant reverberation. Under a condition with reflective walls, the 90th percentile of the localization error of the previous method increased to 0.49 m, while that of the proposed method was only increased to 0.23 m for two microphones and 0.19 m for four microphones. The proposed method contributes to a robust localization in indoor environments and relieves the constraints of receiver configuration

    Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Get PDF
    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to −50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field

    Digital acoustic communication in air using parametric loudspeaker

    Get PDF
    We propose an acoustic communication system using parametric loudspeaker that emits a communication signal into a limited area. We found that the use of minimum shift keying is suitable, since it has the potential and second harmonic signal that occur when the emit signal is distorted during propagation due to the effect of air. Experiments revealed that the proposed system emits an audible signal to a limited area, achieves a BER of 10−3 at Eb/N0 of 10 dB. Thus, it outperforms benchmarks using other modulation schemes
    corecore